Newswise — Dr. Hyuk-June Moon from the Bionics Research Center at the Korea Institute of Science and Technology (KIST) , in collaboration with Prof. Olaf Blanke’s team at the Swiss Federal Institute of Technology Lausanne (EPFL), has successfully induced self-location illusions with multi-sensory virtual reality (VR) in the MRI scanner and observed corresponding changes in the human brain's grid cell activity.

The brain is known to contain grid cells and place cells, which perform global positioning system (GPS) functions that allow us to recognize where we are. While traveling to a specific place, the GPS cells along the way fire in turn, depending on their location, and these cells play an important role in recognizing our location in the form of coordinates and remembering events in space. Humans can sometimes perceive themselves to be in a different location without actually moving their physical bodies such as during an illusion, such as out-of-body experience.

However, such purely cognitive self-location changes—and the corresponding response of the brain's GPS cells—have not been investigated in animal models like rats, where these perceptions cannot be induced or confirmed. Furthermore, conventional methods to study GPS cell studiess have required opening the skull and measuring the activity of individual cells in the deep brain structures with invasive electrodes, limiting our understanding of human GPS cells. To observe grid cell activity during the illusory.