Researchers at Baylor College of Medicine and collaborating institutions have uncovered new potential therapeutic targets for cancer and new insights into existing cancer drug targets, expanding the breadth of possibilities for treating this disease. Using a comprehensive approach that included integrating proteomics, genomics and epigenomics data from 10 cancer types, the team identified protein and small protein or peptide targets in cancer tissues and validated many of them experimentally as promising candidates for therapeutic strategies. The study appeared in Cell .

"Experience has shown that targeted therapies, cancer treatments directed at specific proteins in cancer cells, hold promise for achieving more effective clinical results than traditional radiotherapy and chemotherapy," said co-corresponding author Dr. Bing Zhang, professor of molecular and human genetics and part of the Lester and Sue Smith Breast Center at Baylor. "Although there is progress identifying potential vulnerabilities of specific cancer types, fewer than 200 proteins are targeted by FDA-approved cancer drugs.

In this study we significantly expanded the list of potential therapeutic targets by analyzing data from more than 1,000 tissue samples spanning 10 cancer types." The researchers applied computational tools to integrate proteogenomic data comprising genome-wide information on DNA, RNA and proteins that was generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) from prospective.