Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases, primarily caused by metabolic disorders and systemic inflammatory responses. Although the incidence of MASH is gradually increasing, there is a lack of effective drugs and methods for its treatment, thus limiting therapeutic options for MASH. Professor Liu Lei's team has long focused on the treatment and molecular mechanisms of liver-related diseases.

Due to cerium's significant antioxidant and anti-inflammatory activities, as well as its hepatophilicity and good biosafety, it shows great potential in liver disease treatment. The researchers first utilized the metal coordination function of the phytic acid (PA) molecule to design and synthesize a cerium-phytic acid (CePA) complex. Compared to PA, the resulting CePA has greater stability and antioxidant activity, providing more stable and effective protection against liver lipid damage.

The researchers subsequently validated CePA's high efficiency and safe mTOR inhibition capacity through molecular docking, cell experiments, and MASH animal models, indicating its potentially important role in MASH treatment. Recently, the Liu Lei/Zhao Junlong team from Air Force Medical University and the Qu Yongquan/Tian Zhimin team from Northwestern Polytechnical University published a research paper titled "Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohe.