featured-image

In response to stressful or dangerous stimuli, nerve cells in the spinal cord activate involuntary, autonomic reflexes often referred to as "fight or flight" responses. These protective responses cause changes in blood pressure and the release of stress hormones into the blood stream. Normally, these responses are short-lived and well-controlled, but this changes after a traumatic spinal cord injury.

A first-ever study published in the journal Science Translational Research identifies a druggable cellular target that, if controlled properly, could prevent or lessen autonomic dysfunction and improve quality of life for people with spinal cord injury. "We discovered that exaggerated, life-threatening autonomic reflexes after spinal cord injury are associated with abnormal growth and rewiring of nerve fibers in the spinal cord. A specific cell type, called microglia, control this abnormal growth and rewiring," said corresponding author Phillip Popovich, PhD, professor and chair of the department of neuroscience at The Ohio State University Wexner Medical Center and College of Medicine.



"Using experimental tools to deplete microglia, we found it's possible to prevent abnormal nerve growth, and prevent autonomic complications after spinal cord injury," said Popovich, who also is executive director of Ohio State's Belford Center for Spinal Cord Injury. This research used a mouse model of spinal cord injury. However, abnormal, potentially life-threatening autonomic reflexes also occ.

Back to Health Page