featured-image

Newswise — Traffic noise pollution is a major environmental issue, worsened by the increasing number of vehicles. Long-term exposure to high noise levels can cause health problems like insomnia, hypertension, and cardiovascular diseases. Traditional methods for evaluating and optimizing sound barriers are often costly and time-consuming.

Advances in computational techniques have introduced more efficient simulation-based approaches. Due to these challenges, it is essential to conduct in-depth research to improve the design and effectiveness of sound barriers in reducing traffic noise. Researchers from Qingdao University and the University of Siegen have published a study (DOI: 10.



1002/msd2.12087) in the International Journal of Mechanical System Dynamics in 2023, introducing a semianalytical meshless method to optimize sound barriers. This innovative approach refines acoustic performance by analyzing barrier shapes and sound-absorbing material distribution, offering a more efficient solution to urban noise pollution.

The research introduces a semianalytical meshless method to evaluate and optimize the performance of sound barriers. By analyzing various shapes, such as vertical, Half-Y, and T-shaped barriers, the study assesses their acoustic performance using the Burton–Miller-type singular boundary method (BM-SBM). This method simplifies the acoustical impedance boundary condition and employs the method of moving asymptotes (MMA) for optimizing material distribution.

Num.

Back to Health Page