Newswise — Developing chemotherapy drugs against breast cancer is costly, slow, and often inefficient, with more than 95% of screened drug candidates failing in patient trials. A groundbreaking technique for 3D cell culturing, developed by researchers at Finland’s Aalto University, offers unprecedented insight into the spread of cancer cells through tissue. The technique paves the way to improved efficacy in screening for chemotherapy drug candidates, potentially enabling the screening out of non-viable drug candidates much earlier in the process.
Moving beyond conventional, 2D cell cultures, the biomechanical analysis technique allows breast cancer cells to be grown within 3D cell culture material that more accurately mimics the structures of human tissue, explains principal investigator Juho Pokki . “Cancer cells actually feel the tissue that they’re in, and they can change their behaviour based on their surroundings. When they move at different speeds they sense distinct stresses.
Stresses can be the difference between the cancer spreading or its movement being mechanically blocked,” says Pokki. After chemotherapy, residual cancer cells may remain in the tissue and start to move, causing the cancer to recur. The research aims to control the properties of the extracellular matrix (ECM) that cancer cells use to move, investigating how to stop these residual cancer cells.
One version of this novel technique was recently announced in the journal of Soft Matter . The .
