In a recent study published in the journal Nature Communications , researchers in the United States investigated the benefits of liquid foam as an alternative to conventional liquid-based gene delivery agents. They accessed the safety, practicality, and accessibility (including cost) of these novel vectors. Their findings highlight that a liquid foam comprised of methylcellulose and xanthan gum (both approved by the US Food and Drug Administration [FDA]) as being safe for human use) depicted transfection efficiency improvements between 2.
9- and 384-fold over liquid-based approaches in nonviral gene delivery to murine model systems. Together, they estimate that foam-based vectors can outperform liquid-based ones by preventing the leaking of the vector's DNA cargo to non-target cells (practicality), can reduce the cost of treatment by tenfold or more (cost and accessibility), and can shield the vector from the host immune system (safety), thereby preventing immune-system-mediated toxicity or oncogenesis (common concerns in conventional liquid vector-based approaches). Schematic illustration depicting how gene therapy foam is freshly prepared and applied therapeutically to supply new genetic material or change existing DNA in cells.
A Nonviral or viral vector (Therapeutic) is added to foam precursor in a syringe connected to a second syringe filled with air. The air and foam precursor are mixed by vigorously drawing the syringe plungers back and forth at least 30 times, creating.
