featured-image

Newswise — Balance can be impacted by various factors, including diseases such as Parkinson’s disease, acute and chronic injuries to the nervous system, and the natural aging process. Accurately assessing balance in patients is important to identify and manage conditions that affect coordination and stability. Balance assessments also play a key role in preventing falls, understanding movement disorders, and designing appropriate therapeutic interventions across age groups and medical conditions.

However, traditional methods used to assess balance often suffer from subjectivity, are not comprehensive enough and cannot be administered remotely. Moreover, these assessments rely on expensive, specialized equipment which may not be readily accessible in all clinical settings and depend on the clinician’s expertise, which can lead to variability in results. More objective and comprehensive assessment tools in balance evaluation are greatly needed.



Using wearable sensors and advanced machine learning algorithms, researchers from Florida Atlantic University ’s College of Engineering and Computer Science have developed a novel approach that addresses a crucial gap in balance assessment and sets a new benchmark in the application of wearable technology and machine learning in health care. The approach is a significant advance in objective balance assessment, especially for remote monitoring in home-based or nursing care settings, potentially transforming balance disorder manag.

Back to Health Page